223 research outputs found

    Genetic Diversity, Micro Propagation, and Cold Hardiness of Ilex glabra (L.) A. Gray

    Get PDF
    Ilex glabra (L.) A.Gray (inkberry) is a native evergreen shrub with dark green foliage and compact habit. This shrub has gained popularity in the northern landscapes of the United States and more nursery growers would like to produce it. To better understand genetic relationships among inkberry cultivars and breed cold-hardy cultivars for northern nursery growers and landscape specialists, the following projects were conducted. A group of 48 inkberry accessions and two other Ilex species (Ilex crenata Thunb. and I. mutchagara Makino) were studied using amplified fragment length polymorphism (AFLP) markers. A total of 229 markers between 50 and 500 base pairs (bps) were produced from eight AFLP primer combinations. Eighty-seven percent of the markers were polymorphic. The markers for each primer-pair ranged from 22 to 45 and the genetic distance ranged from 0.001 to 0.349. Within the inkberry clade, 48 accessions were classified into six groups including, a wild species group and five cultivated groups, ‘Densa’, f. leucocarpa, ‘Pretty Girl’, ‘Shamrock’ and ‘Viridis’. Within each group, the legitimacy of named cultivars and distinguished clones were discussed based on both morphological and molecular data. Inkberry was hybridized with cold-hardy male Ilex verticillata (L.) A. Gray (common winterberry) and Ilex × meserveae S.Y. Hu (meserve holly) to increase the cold hardiness. Cross pollination of inkberry and its five cultivars with both male plants was carried out in a greenhouse. Inkberry ‘Chamzin’ and ‘Densa’ had higher compatibility with either common winterberry or meserve holly, while inkberry wild species and its cultivar ‘Compacta’ were less compatible, and ‘Nigra’ and ‘Shamrock’ were almost incompatible. The pollen germination in situ observed with fluorescence microscope also supported the above results. Pollen germination of common winterberry and meserve holly on the stigma of inkberry wild species and inkberry ‘Chamzin’, ‘Compacta’, ‘Densa’ was more than that on inkberry ‘Nigra’ and ‘Shamrock’. A dramatic reduction in the number of pollen tubes was observed as they grew along the style and into ovary. The percentage of pollen tubes reaching the ovary of inkberry wild species and inkberry ‘Chamzin’, ‘Compacta’, ‘Densa’ was higher than that of inkberry ‘Nigra’ and ‘Shamrock’. Most of their fruit set were aborted and the fully developed seeds were less than 54.2% (meserve holly) and 32.4% (common winterberry). Reproduction barriers, including the inhibition of pollen germination, pollen tube growth to the style and the ovary, and lack of fertilization, resulted in the cross incompatibility of inkberry with both cold hardy species. Further cross-pollination should consider the incompatibility of cultivar variations. Nodal segments containing one axillary bud (1-1.5 cm) of inkberry were established on a Murashige and Skoog (MS) medium without hormones. The sprouted shoots (~1.0 cm) were cultured on a MS medium supplemented with BAP, KIN or ZT at 2.3, 4.5, 9.1, or 18.2 ”M. After 38 days, ZT and BAP induced multiple shoot formation with multiplication rates of 4-6, while the multiplication rate of KIN was less than 2. Shoots cultured on ZT grew significantly taller than those on BAP and KIN. The height of the longest shoots treated with ZT was 4.6 cm, 1.6-2.2 times greater than those treated with BAP or KIN. Shoots (~2 cm) were subcultured on ÂŒ strength MS (ÂŒ MS) medium containing either IBA or NAA at 2.6, 5.1, or 10.3 ”M. Adventitious roots formed in vitro after 2-4 weeks. IBA at 10.3 ”M produced the best rooting (100%) compared to other treatments after 38 days of culture. The average number of roots per shoot for IBA was about 15, 1.6-3.1 times as many as that of other treatments. All rooted plantlets were successfully transplanted. Cold hardiness tests of inkberry cultivars were conducted in both field trials and laboratory tests. A total of 72% and 93% of plants survived for 2007 and 2008 planting, respectively. ‘Shamrock’ was the most cold-hardy cultivar; f. leucocarpa, ‘Viridis’, and ‘Nigra’ were the least cold-hardy cultivars; while ‘Compacta’, ‘Densa’, ‘Chamzin’, ‘Pretty Girl’, and wild species had intermediate cold hardiness. Based on controlled freezing test of inkberry cultivars, the REC50 value of inkberry cultivars ranged from -19 to -32 ?? for Jan. 2007 and -18 to -38 ?? for Jan. 2008. The cold hardiness rate from field trials was significantly correlated with the REC50 value from laboratory tests. Laboratory test could be used to reliably predict the cold tolerance of inkberry cultivars in the field

    In Vitro Regeneration of \u3ci\u3eRudbeckia hirta\u3c/i\u3e ‘Plainview Farm’ from Leaf Tissue

    Get PDF
    Rudbeckia hirta ‘Plainview Farm’, a new multiple-layered ray flowered cultivar, shows potential for potted plant production. After years of seed germination, this specific flower morphological trait was still unstable from generation to generation. To maintain its unique features, leaf sections (0.25 cm2 ) were cultured on Murashige and Skoog (MS) medium supplemented with either BA (0.5, 1.0, or 2.0 mg·L1 ), KIN (2.5, 5, or 10 mg·L-1 ), or ZT (0.5, 1.0, or 2.0 mg·L-1 )toinduce callus and microshoots. After cultivation for 33 days, all cytokinin treatments significantly induced callus and the callus size were 1.5- to-2.4-fold bigger than those withoutcytokinin. KIN at 2.5 mg·L-1 was the best treatment for callus induction and microshoot formation. Four microshoots per explant wereproduced at KIN of 2.5 mg·L-1 . For rooting, all induced microshoots were cultured on MS medium at its one-quarter strength containing either IBA or NAA at 0.5, 1.5, or 3.0 mg·L-1 . All microshoots formed roots at 0.5 or 1.5 mg·L-1 IBA, or 0.5 mg·L-1 NAA. There were no significant differences in number of roots per shoot and length of roots among treatments. The plantlets were transplanted, acclimated in a mist system, and grown in a greenhouse. A total of 96.4% of the plants derived from tissue culture had multiple layers of ray flowers, while only 9.6% of the plants from seed propagation did. Therefore, in vitro regeneration of R. hirta ‘Plainview Farm’ was a feasible way to rapidly produce uniform plants with multiple layers of ray flowers

    Impact of Low and Moderate Salinity Water on Plant Performance of Leafy Vegetables in a Recirculating NFT System

    Get PDF
    Two greenhouse experiments were conducted to examine the growth and mineral nutrition of four leafy vegetables in a nutrient film technique (NFT) system with water with low to moderate salinity. In Expt. 1, a nutrient solution was prepared using reverse osmosis (RO) water and treatments consisted of supplementing with RO water, tap water, or nutrient solution. In Expt. 2, nutrient solution was prepared using three different water sources (treatments), namely, RO water, tap water, or tap water, plus sodium chloride (NaCl), and supplementing solution was prepared using the same three water sources at one third strength. For both of the experiments, seeds of pac choi ‘Tokyo Bekana’, ‘Mei Qing Choi’, and ‘Rosie’ (Brassica rapa var. chinensis) and leaf lettuce ‘Tropicana’ (Lactuca sativa) were sown and were grown in a growth chamber. Two weeks after sowing, seedlings were transplanted to the NFT systems. Expt. 1 was conducted from 19 April to 19 May 2016 and Expt. 2 from 6 September to 12 October 2016. In Expt. 1, nitrate (NO3−) and phosphorus (P) levels in the tanks decreased, and potassium (K+) levels reached almost zero at the end of the experiment when supplemented with RO or tap water. However, calcium (Ca2+), magnesium (Mg2+), and sulfate (SO42−) either did not decrease or increased over time. Supplementing water type did not affect the growth of leaf lettuce and ‘Mei Qing Choi’ pac choi; however, fresh weight of ‘Rosie’ pac choi and both fresh and dry weight of ‘Tokyo Bekana’ pac choi were reduced when supplemented with RO water. Leaf sap NO3− was reduced in ‘Tokyo Bekana’ pac choi, but not in other varieties, when supplemented with RO or tap water. Leaf sap K+ decreased in ‘Tokyo Bekana’, but not in other varieties. The supplementing water type did not impact leaf sap Ca2+, regardless of vegetable varieties. In Expt. 2, NO3− in all of the treatments, P in RO water, and K+ in RO or tap water decreased in the last week of the experiment. Other macronutrients did not change substantially over time. The addition of NaCl significantly reduced the growth of all the vegetables. ‘Tropicana’ leaf lettuce was the least tolerant to NaCl, followed by ‘Rosie’ pac choi. Water source did not affect leaf Ca2+, K+, P, SO42−, and Mg2+ except for ‘Tokyo Bekana’ where NaCl addition decreased Ca2+ and Mg2+. Our results indicated that the tested leafy vegetables differed in response to various types of water used as supplementing or as source water. N, P, and especially K, should be supplemented in the late stage of the experiment, while replacing the whole tank nutrient solution is only necessary when Na+ and/Cl− build up to harmful levels

    Morphological and Physiological Responses of Cornus Alba to Salt and Drought Stresses Under Greenhouse Conditions

    Get PDF
    Tatarian dogwood (Cornus alba) is an ornamental shrub with white fruits, creamy-white flowers, and red stems in fall through late winter and is widely used in residential landscape, public parks, and botanical gardens. Two greenhouse experiments were conducted to characterize the survival, morphological, aesthetic, and physiological responses of tatarian dogwood seedlings to salinity and drought stresses. In Expt. 1, tatarian dogwood seedlings grown in three soilless growing substrates (Metro-Mix 360, 560, and 902) were irrigated with a nutrient solution at an electrical conductivity (EC) of 1.2 dS·m−1 (control) or saline solution (by adding calculated amount of sodium chloride and calcium chloride) at an EC of 5.0 or 10.0 dS·m−1 once per week for 8 weeks. Results showed that substrate did not influence the growth of tatarian dogwood seedling. All plants irrigated with saline solutions at an EC of 10.0 dS·m−1 died, whereas those irrigated with saline solutions at an EC of 5.0 dS·m−1 exhibited severe foliar salt damage with an average visual score of 1.0 (on a scale of 0 to 5, with 0 = dead and 5 = excellent without foliar salt damage). Compared with the control, saline solutions at an EC of 5.0 dS·m−1 reduced plant height and shoot dry weight (DW) by 50.8% and 55.2%, respectively. Relative chlorophyll content [soil plant analysis development (SPAD) reading], chlorophyll fluorescence (Fv/Fm), and net photosynthesis rate (Pn) also decreased when plants were irrigated with saline solutions at an EC of 5.0 and 10.0 dS·m−1. Leaf sodium (Na+) concentration of tatarian dogwood seedlings irrigated with saline solutions at an EC of 5.0 and 10.0 dS·m−1 increased 11 and 40 times, respectively, compared with the control, whereas chloride (Cl-) concentration increased 25 and 33 times, respectively. In Expt. 2, tatarian dogwood seedlings were irrigated at a substrate volumetric water contents (volume of water/volume of substrate, VWC) of 15%, 20%, 25%, 30%, 35%, 40%, or 45% using a sensor-based automated irrigation system for 60 days. Results showed that drought stress decreased plant growth of tatarian dogwood seedlings with a reduction of 71%, 85%, and 87% in plant height, leaf area, and shoot DW, respectively, when VWC decreased from 45% to 15%, but all plants survived at all VWC treatments. Significant reductions of photosynthesis (Pn), stomatal conductance (gS), transpiration rate (E), and water potential were also found in plants at a VWC of 15%, compared with other VWCs. However, SPAD readings and Fv/Fm of tatarian dogwood seedlings were similar among the VWCs. In conclusion, tatarian dogwood seedlings were sensitive to the salinity levels tested in this study but could survive at all tested substrate volumetric water contents and exhibited resistance to drought conditions

    Relative Salt Tolerance of 22 Pomegranate (\u3ci\u3ePunica granatum\u3c/i\u3e) Cultivars

    Get PDF
    A greenhouse experiment was conducted to determine the relative salt tolerance of pomegranate (Punica granatum) cultivars. Twenty-two pomegranate cultivars were irrigated weekly with a saline solution at an electrical conductivity (EC) of 10.0 dS·m–1 for 4 weeks and subsequently with a saline solution at an EC of 15.0 dS·m–1 for another 3 weeks (salt treatment). Another group of uniform plants was watered with a nutrient solution without additional salts at an EC of 1.2 dS·m–1 (control). No visual foliar salt damage (leaf burn, necrosis, or discoloration) was observed during the entire experimental period; however, salt treatment impacted pomegranate growth negatively, with a large variation among cultivars. Salt treatment reduced shoot length by 25% and dry weight (DW) by 32% on average for all cultivars. Cluster analysis classified the 22 tested pomegranate cultivars in two groups. The group consisting of ‘Arturo Ivey’, ‘DeAnda’, ‘Kazake’, ‘Russian 8’, ‘Apseronski’, ‘Purple Heart’, ‘Carolina Vernum’, ‘Chiva’, ‘Kunduzski’, ‘Larry Ceballos 1’, ‘ML’, ‘Salavatski’, ‘Spanish Sweet’, and ‘Wonderful’ was more salt tolerant than the group including ‘Al-Sirin-Nar’, ‘Kandahar’, ‘SurhAnor’, ‘Early Wonderful’, ‘Angel Red’, ‘Ben Ivey’, ‘Utah Sweet’, and ‘Mollar’. The sodium (Na) concentration in the leaf tissue of all 22 pomegranate cultivars was less than 1 mg·g–1 on a DW basis. All pomegranate cultivars in the salt treatment had an average leaf chloride (Cl) content of 10.03 mg·g–1 DW—an increase of 17% from the control. These results indicate that pomegranate plants have a strong capability to exclude Na and Cl accumulation in leaf tissue. In conclusion, the pomegranate plant is very tolerant to saline water irrigation up to an EC of 15 dS·m–1 with little foliar salt damage and a slight growth reduction. Investigation is needed to determine the effects of saline water on the fruit yield and nutritional quality of pomegranate

    Comparing the Salt Tolerance of Three Landscape Plants Using a Near-Continuous Gradient Dosing System

    Get PDF
    Screening salinity-tolerant plants is usually time intensive and only applicable to a limited number of salinity levels. A near-continuous gradient dosing (NCGD) system allows researchers to evaluate a large number of plants for salinity tolerance with multiple treatments, more flexibility, and reduced efforts of irrigation. Rose of sharon (Hibiscus syriacus), ninebark (Physocarpus opulifolius), and japanese spirea (Spiraea japonica) were irrigated using an NCGD system with eight electrical conductivity (EC) levels ranging from 0.9 to 6.5 dS·m–1. At 11 weeks after irrigation was initiated, there were no significant differences among EC levels in terms of visual score, growth index [(Height + Width 1 + Width 2)/3], stem diameter, number of inflorescences, and shoot dry weight (DW) of rose of sharon. However, the root DW, relative chlorophyll content (SPAD), and net photosynthesis rate (Pn) of rose of sharon decreased linearly as EC levels increased. Ninebark and japanese spirea had increased foliar salt damage with increasing EC levels. The growth index, stem diameter, number of inflorescences, shoot and root DW, SPAD, and Pn of ninebark decreased linearly as EC levels increased. The growth index and SPAD of japanese spirea decreased quadratically with increasing EC levels, but its stem diameter, number of inflorescences, shoot and root DW, and Pn decreased linearly with increasing EC levels. The salinity threshold (50% loss of shoot DW) was 5.4 and 4.6 dS·m–1, respectively, for ninebark and japanese spirea. We were not able to define the salinity threshold for rose of sharon in this study. However, rose of sharon was the most salinity-tolerant species among the three landscape plants

    Speckle reducing bilateral filter for cattle follicle segmentation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ultrasound imaging technology has wide applications in cattle reproduction and has been used to monitor individual follicles and determine the patterns of follicular development. However, the speckles in ultrasound images affect the post-processing, such as follicle segmentation and finally affect the measurement of the follicles. In order to reduce the effect of speckles, a bilateral filter is developed in this paper.</p> <p>Results</p> <p>We develop a new bilateral filter for speckle reduction in ultrasound images for follicle segmentation and measurement. Different from the previous bilateral filters, the proposed bilateral filter uses normalized difference in the computation of the Gaussian intensity difference. We also present the results of follicle segmentation after speckle reduction. Experimental results on both synthetic images and real ultrasound images demonstrate the effectiveness of the proposed filter.</p> <p>Conclusions</p> <p>Compared with the previous bilateral filters, the proposed bilateral filter can reduce speckles in both high-intensity regions and low intensity regions in ultrasound images. The segmentation of the follicles in the speckle reduced images by the proposed method has higher performance than the segmentation in the original ultrasound image, and the images filtered by Gaussian filter, the conventional bilateral filter respectively.</p

    Responses of Ornamental Grass and Grass-Like Plants to Saline Water Irrigation

    Get PDF
    Ornamental grasses are popular in urban landscapes in Utah and the Intermountain West United States, one of the driest and fastest growing regions in the United States. This experiment evaluated the responses of five ornamental grass species [blue grama (Bouteloua gracilis), indian sea oats (Chasmanthium latifolium), ‘Blue Dune’ sand ryegrass (Leymus arenarius), pink muhly grass (Muhlenbergia capillaris), ‘Foxtrot’ fountain grass (Pennisetum alopecuroides)] and two ornamental grasslike species [fox sedge (Carex vulpinoidea), common rush (Juncus effusus)] to saline irrigation water in a greenhouse. Plants were irrigated weekly with a nutrient solution at an electrical conductivity (EC) of 1.2 dS·m–1 (control) or saline solutions at an EC of 5.0 or 10.0 dS·m–1. At the first harvest (9 weeks after the initiation of treatment), sand ryegrass, pink muhly grass, and fountain grass irrigated with solutions at an EC of 5.0 and 10 dS·m–1 had good visual quality with no or minimal foliar salt damage; however, the remaining species exhibited slight or moderate foliar salt damage. There were no significant differences in shoot dry weight (DW) among treatments within any species, except fox sedge and fountain grass. At the second harvest (18 weeks after the initiation of treatment), sand ryegrass, pink muhly grass, and fountain grass still had no or minimal foliar salt damage, and indian sea oats and fox sedge exhibited slight or moderate foliar salt damage. Compared with the control, all species irrigated with solutions at an EC of 10.0 dS·m–1 had reduced shoot DWs with the exception of blue grama. However, only common rush and pink muhly grass irrigated with solutions at an EC of 5.0 dS·m–1 had lower shoot DWs than the control. These results demonstrated that seven ornamental grass or grasslike species had a very strong tolerance to the salinity levels used in the 4-month experiment. Although plant growth was inhibited as a result of saline irrigation, plant visual quality of sand ryegrass, pink muhly grass, and fountain grass was still acceptable. These three species appear to be more suitable for landscapes in which saline irrigation water is used. Further research is needed to evaluate more ornamental grasses for landscapes in salt-prone areas and nearby coastal regions

    Salt Tolerance of Sego SupremeTM Plants

    Get PDF
    Sego SupremeTM is a designated plant breeding and introduction program at the Utah State University Botanical Center and the Center for Water Efficient Landscaping. This plant selection program introduces native and adapted plants to the arid West for aesthetic landscaping and water conservation. The plants are evaluated for characteristics such as color, flowering, ease of propagation, market demand, disease/pest resistance, and drought tolerance. However, salt tolerance has not been considered during the evaluation processes. Four Sego SupremeTM plants [Aquilegia barnebyi (oil shale columbine), Clematis fruticosa (Mongolian gold clematis), Epilobium septentrionale (northern willowherb), and Tetraneuris acaulis var. arizonica (Arizona four-nerve daisy)] were evaluated for salt tolerance in a greenhouse. Uniform plants were irrigated weekly with a nutrient solution at an electrical conductivity (EC) of 1.25 dS·m−1 as control or a saline solution at an EC of 2.5, 5.0, 7.5, or 10.0 dS·m−1 for 8 weeks. After 8 weeks of irrigation, A. barnebyi irrigated with saline solution at an EC of 5.0 dS·m−1 had slight foliar salt damage with an average visual score of 3.7 (0 = dead; 5 = excellent), and more than 50% of the plants were dead when irrigated with saline solutions at an EC of 7.5 and 10.0 dS·m−1. However, C. fruticosa, E. septentrionale, and T. acaulis had no or minimal foliar salt damage with visual scores of 4.2, 4.1, and 4.3, respectively, when irrigated with saline solution at an EC of 10.0 dS·m−1. As the salinity levels of treatment solutions increased, plant height, leaf area, and shoot dry weight of C. fruticosa and T. acaulis decreased linearly; plant height of A. barnebyi and E. septentrionale also declined linearly, but their leaf area and shoot dry weight decreased quadratically. Compared with the control, the shoot dry weights of A. barnebyi, C. fruticosa, E. septentrionale, and T. acaulis decreased by 71.3%, 56.3%, 69.7%, and 48.1%, respectively, when irrigated with saline solution at an EC of 10.0 dS·m−1. Aquilegia barnebyi and C. fruticosa did not bloom during the experiment at all treatments. Elevated salinity reduced the number of flowers in E. septentrionale and T. acaulis. Elevated salinity also reduced the number of shoots in all four species. Among the four species, sodium (Na+) and chloride (Cl–) concentration increased the most in A. barnebyi by 53 and 48 times, respectively, when irrigated with saline solution at an EC of 10.0 dS·m−1. In this study, C. fruticosa and T. acaulis had minimal foliar salt damage and less reduction in shoot dry weight, indicating that they are more tolerant to salinity. Epilobium septentrionale was moderately tolerant to saline solution irrigation with less foliar damage, although it had more reduction in shoot dry weight. On the other hand, A. barnebyi was the least tolerant with severe foliar damage, more reduction in shoot dry weight, and a greater concentration of Na+ and Cl–

    Producing Maple Syrup From Boxelder and Norway Maple Trees

    Get PDF
    In Utah, two common tappable maple species are boxelder, sometimes called ashleaf maple (Acer negundo), and Norway maple (Acer platanoides). Both species are abundant throughout the state, with the former primarily found in natural mid-elevation canyons and the latter extensively planted in urban landscapes. Maple syrup is a natural source of sugar and can be used in many recipes to make yummy treats and foods. The best part is that it is relatively easy to obtain and simple to make. This fact sheet reviews the syrup-making process
    • 

    corecore